COL7160 : Quantum Computing

Lecture 4: Unitary Operations and Quantum Gates

Instructor: Rajendra Kumar Scribe: Rupanshu Shah

1 Fundamental Laws of Quantum Mechanics

+ Linearity of Operations:

- Every valid quantum operation U must be linear.

Linearity allows operations to be represented as matrix multiplication.

For an n-qubit state, U is represented by a 2" x 2" complex matrix.

Quantum Operation U : |¢in) — |Yout)

« Preservation of Normalization:

— A quantum operation must take a valid quantum (normalized) state and produce another valid quantum
(normalized) state.

- This imphes <wzn|wzn> = <wout|wout> = <’L/}zn|UTU‘wzn>
— For this to hold for every |;,,), the condition UTU = I must be satisfied.

— Such matrices U are called unitary matrices.

2 Measurement vs. Quantum Operations

+ Quantum Operations:

— These are reversible and deterministic.

— Determinism means that given a fixed |t;,,) and U, you always get a fixed |¢)oyt)-
« Measurement:

— Unlike unitaries, measurement is probabilistic and irreversible.

— The inclusion of measurement makes quantum algorithms inherently probabilistic.

3 Structure of Quantum Algorithms

« Basic Workflow:

— Algorithms typically start with all qubits in the |0) state.

— They apply a sequence of Unitary operations and Measurements.
« Operational Rules:

— Multiple consecutive unitaries can be combined into a single unitary matrix.

— The input to the algorithm determines which unitaries are applied.
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Figure 1: General structure of a quantum algorithm.

Example 1: Hadamard Transform

1 1
LR _ 1
« Matrix: H = 7 (1 _1>

« Action on Computational Basis:

- H|0) = [+)
- H1)=|-)

« Action on Hadamard Basis:

- H[+)=10)
- H|=) =1

« Property: H' = H (Self-adjoint).

Usage: Sampling a random bit

0 with prob 1/2

{10y, 11)}

0) — H X

1 with prob 1/2
Figure 2: Quantum circuit for sampling a random bit.

Example 2: Rotation Matrix R(0)

« The rotation matrix R () rotates a state by an angle of /2 on a single application:

~ (cos(0/2) —sin(0/2)
R(9) = <sin(0/2) cos(6/2) >

« Let’s focus on the case where [1)) = «|0) + 3|1), where a, 3 € R and o? + 32 = 1.
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Figure 3: Rotation of a quantum state on the real unit circle.

Observation: (R(7/2))?|0) = [1). This follows because applying R(7/2) twice results in a total rotation of 7 /2

(or 90°).

4 Elitzur-Vaidman Bomb Testing

+ Setup:

— There is a bomb that is either functional (working) or non-functional (not working).

We can send a single qubit state |¢) to the bomb to test its status without exploding it.

Functional Bomb: Measures the qubit in the computational basis.

« If the measurement result is 1, the bomb explodes.
» If the result is 0, it returns the state |0).

without any interaction.

Protocol and Feedback Circuit

Non-functional Bomb: Acts as an identity operation; it takes input |¢)) and outputs the same state |1))

The protocol involves a sequence of rotations and interactions with the bomb. If the bomb does not explode, the
output is fed back as the input for the next iteration.

0)

R(6)

{10y, 1)
Bomb /7<$

Feedback loop (if no blast)

Figure 4: Feedback circuit for Elitzur-Vaidman bomb testing.

Detailed Analysis

One Iteration (Functional Bomb)

« Starting with |0), we apply R(6) to get: R() |0) = cos(6/2) |0) + sin(6/2) |1).



« The functional bomb measures this state.
« Probability of Blast: P(blast) = |sin(6/2)|*> = sin?(0/2).
- Probability of No Blast: P(no blast) = | cos(0/2)|> = cos?(6/2).

« If there is no blast, the bomb returns state |0), which is fed back into the next iteration.

Multi-Iteration Analysis (n iterations)

« Case 1: Bomb is Functional

The probability that the bomb does not explode after n iterations is (cos?(6/2))"™ = cos**(0/2).
Total Blast Probability: P(at least 1 blast) = 1 — (cos?(6/2))".
Using cos?(0/2) = 1 — sin®(0/2), we get:

P(blast) = 1 — (1 —sin?(/2))" ~ 1 — (1 — nsin?(8/2)) = nsin(/2)

If the bomb does not explode, the final measurement in the standard basis will yield 0 with probability 1.

« Case 2: Bomb is Non-functional

The state simply rotates n times: (R(6))™ |0) = R(n#) |0).

— We choose n = 7/6 so that the total rotation is 7/2.

The final state is R(7) [0) = |1).

— The final measurement in the standard basis will yield 1 with probability 1.

Efficiency and Success

« For n = 7/0, we can distinguish a functional bomb from a non-functional one if the bomb did not explode.

+ The blast probability is P(blast) ~ % - sin®(6/2) < Z - % =zf,

« By decreasing # (and increasing n), the probability of exploding the bomb during testing can be made arbitrarily
small.

5 Properties of Unitary Maps

In this section, we explore the fundamental relationship between unitary matrices and orthonormal bases.
Lemma 1. Let U be a linear map on C?. Then U is unitary (UTU = I) iff the columns of U form an orthonormal basis.

Proof. Let the columns of U be denoted by |v1) , |[v2) , . . ., |vg). The entry at row i and column j of the product UTU
is given by the inner product of the i-th row of U (which is the conjugate transpose of the i-th column of U) and
the j-th column of U. Thus, (UTU);; = (v;|v;).

« Lemma 1.1 ( = ): If U is unitary, then UTU = I. This implies (UTU)Z-j = 0;;, where ¢;; is the Kronecker
delta. Therefore, (v;|v;) = 1if i = j and 0 if i # j, meaning the columns are orthonormal. Since there are d
such vectors in C%, they form an orthonormal basis.

« Lemma 1.2 ( <= ): If the columns form an orthonormal basis, then (v;|v;) = &;;. It follows that (UTU);; =
8ij, so UTU = I, making U unitary.

O
Lemma 2. U is unitary iff it transforms any orthonormal basis of C? into an orthonormal basis.

Proof. Let {|e1),...,|eq)} be an arbitrary orthonormal basis. The transformed basis is {| f;) } where |f;) = U |e;).



+ Lemma 2.1 ( = ): Suppose U is unitary. The inner product of the transformed vectors is:
(filf) = Ule) (U les)) = (e UTU |ej)

Since UTU = I, this simplifies to {e;|e;) = &;;. Thus, the transformed vectors remain orthonormal and form
a basis.

« Lemma 2.2 ( <= ): If U transforms any orthonormal basis into an orthonormal basis, let it act on the standard
basis {|0),[1),...,|d — 1)}. The columns of U are exactly the images of the standard basis vectors. Since these
images must be orthonormal by assumption, the columns of U are orthonormal. By Lemma 1.2, U is unitary.

O

Lemma 3. IfU transforms a specific orthonormal basis of C? into another orthonormal basis, then U transforms each
orthonormal basis of C? into some orthonormal basis.

Proof. Let By = {|v1),|v2), ..., |va)} be a specific orthonormal basis that U transforms into another orthonormal
basis Bs = {|w1),|wa), ..., |wa)}. By definition, U |v;) = |w;) for all 7.

1. Preservation of Inner Product for Basis Vectors: Since B is an orthonormal basis, the inner product of
the transformed vectors satisfies:

<U’Ui‘U’Uj> = <w2|wj> = 51’]’
Since Bj is also orthonormal, we have (v;|v;) = §;5. Thus, (Uv;|Uv;) = (v;|v;) for all 4, j.

2. General Unitarity: Any arbitrary vectors |a) , |b) € C? can be expanded in the basis B; as |a) = Y, a; |v;)
and [b) =}, b; [v;). Due to the linearity of U:

(UalUb) =" arb; (Uvi|Uvs) = > aibidi; = > ajb; = (alb)
i i i
This identity (a| UTU |b) = (a| I |b) for all |a) , |b) implies UTU = I. Therefore, U is unitary.

3. Transformation of Any Basis: By Lemma 2.1, we have already established that if U is unitary, it transforms
any orthonormal basis into another orthonormal basis. Thus, the property holds universally.

O

6 Elementary Quantum Gates

6.1 Single Qubit Gates
- Hadamard (H):

1 1
CO. _ 1
Matrix: H = 7 (1 1>

Action on Computational Basis:

C H|0) = |+)
CHIL) =)

— Action on Hadamard Basis:
« HI4) =0)
CH|-) =)

Property: HT = H (Self-adjoint).

« Pauli-X (Bit Flip):



. (0 1
— Matrix: X = <1 0)

— Action:
» X[0) = 1)
X 1) = o)

+ Pauli-Z (Phase Flip):

— Matrix: Z = (1 0 >

0 -1
— Action on Computational Basis:
. Z10) = 0)
.z =—)
— Action on Hadamard Basis: (Acts as bit flip in Hadamard basis)
» Z|+)=1-)
» Z|=) = 1[+)
« Pauli-Y:
- Matrix: Y = (O _Z)
1 0
- Relation: Y =iXZ
— Action:
* Y'|0) =1|1)
* Y1) =—1]0)

+ Phase Gate (R,):
. 1 0
- Matrix: R, = <0 ei“">
- Action:
< Ry[0) = 0)
. Ry1) = e 1)
— Note: The Z gate is a special case where Z = R.

6.2 Multi-Qubit Gates
« CNOT (Controlled-NOT):

A 2-qubit gate with a control qubit and a target qubit.

Matrix Representation:

CNOT =

S o o=
o oo
— o O O
o= OO

Operational Mapping:

+ CNOT|0) |b) = |0) |b)

« CNOT|1) |b) = |1) |1 @ b)
Qubit Roles:

« First qubit — Control qubit

« Second qubit — Target qubit



« CCNOT (Toffoli Gate):
— A 3-qubit gate where the third qubit (target) is flipped if and only if the first two qubits (controls) are
both in the |1) state.

- Matrix Representation:
Isxe | O

CCNOT = 0

=)
O =

- Logic:
* |2,y 2) = |y, 28 (2 Ay))

7 Exercises

1. Conditional Unitary Construction: Construct a matrix for a 2n qubit state that applies unitary U to the
last n qubits only when the first n qubits are all 1.

2. Universal Logic: Construct classical AND, OR, and NOT gates using only the Toffoli gate.
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