
COL7160 : Quantum Computing
Lecture 4: Unitary Operations andQuantum Gates

Instructor: Rajendra Kumar Scribe: Rupanshu Shah

1 Fundamental Laws ofQuantum Mechanics
• Linearity of Operations:

– Every valid quantum operation U must be linear.
– Linearity allows operations to be represented as matrix multiplication.
– For an n-qubit state, U is represented by a 2n × 2n complex matrix.
– Quantum Operation U : |ψin⟩ → |ψout⟩

• Preservation of Normalization:

– A quantum operation must take a valid quantum (normalized) state and produce another valid quantum
(normalized) state.

– This implies ⟨ψin|ψin⟩ = ⟨ψout|ψout⟩ = ⟨ψin|U†U |ψin⟩.
– For this to hold for every |ψin⟩, the condition U†U = I must be satisfied.
– Such matrices U are called unitary matrices.

2 Measurement vs. Quantum Operations
• Quantum Operations:

– These are reversible and deterministic.
– Determinism means that given a fixed |ψin⟩ and U , you always get a fixed |ψout⟩.

• Measurement:

– Unlike unitaries, measurement is probabilistic and irreversible.
– The inclusion of measurement makes quantum algorithms inherently probabilistic.

3 Structure ofQuantum Algorithms
• Basic Workflow:

– Algorithms typically start with all qubits in the |0⟩ state.
– They apply a sequence of Unitary operations and Measurements.

• Operational Rules:

– Multiple consecutive unitaries can be combined into a single unitary matrix.
– The input to the algorithm determines which unitaries are applied.
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Figure 1: General structure of a quantum algorithm.

Example 1: Hadamard Transform

• Matrix: H = 1√
2

(
1 1
1 −1

)
• Action on Computational Basis:

– H |0⟩ = |+⟩
– H |1⟩ = |−⟩

• Action on Hadamard Basis:

– H |+⟩ = |0⟩
– H |−⟩ = |1⟩

• Property: H† = H (Self-adjoint).

Usage: Sampling a random bit

|0⟩ H
{|0⟩ , |1⟩}

0 with prob 1/2

1 with prob 1/2

Figure 2: Quantum circuit for sampling a random bit.

Example 2: Rotation Matrix R(θ)

• The rotation matrix R(θ) rotates a state by an angle of θ/2 on a single application:

R(θ) =

(
cos(θ/2) − sin(θ/2)
sin(θ/2) cos(θ/2)

)

• Let’s focus on the case where |ψ⟩ = α |0⟩+ β |1⟩, where α, β ∈ R and α2 + β2 = 1.
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|0⟩

|1⟩

|0⟩

R(θ) |0⟩

θ/2

(R(θ))2 |0⟩

θ

− |0⟩

− |1⟩

Figure 3: Rotation of a quantum state on the real unit circle.

Observation: (R(π/2))2 |0⟩ = |1⟩. This follows because applying R(π/2) twice results in a total rotation of π/2
(or 90◦).

4 Elitzur-Vaidman Bomb Testing
• Setup:

– There is a bomb that is either functional (working) or non-functional (not working).
– We can send a single qubit state |ψ⟩ to the bomb to test its status without exploding it.
– Functional Bomb: Measures the qubit in the computational basis.

∗ If the measurement result is 1, the bomb explodes.
∗ If the result is 0, it returns the state |0⟩.

– Non-functional Bomb: Acts as an identity operation; it takes input |ψ⟩ and outputs the same state |ψ⟩
without any interaction.

Protocol and Feedback Circuit
The protocol involves a sequence of rotations and interactions with the bomb. If the bomb does not explode, the
output is fed back as the input for the next iteration.

|0⟩ R(θ) Bomb

Feedback loop (if no blast)

{|0⟩ , |1⟩}

Figure 4: Feedback circuit for Elitzur-Vaidman bomb testing.

Detailed Analysis
One Iteration (Functional Bomb)

• Starting with |0⟩, we apply R(θ) to get: R(θ) |0⟩ = cos(θ/2) |0⟩+ sin(θ/2) |1⟩.
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• The functional bomb measures this state.

• Probability of Blast: P (blast) = | sin(θ/2)|2 = sin2(θ/2).

• Probability of No Blast: P (no blast) = | cos(θ/2)|2 = cos2(θ/2).

• If there is no blast, the bomb returns state |0⟩, which is fed back into the next iteration.

Multi-Iteration Analysis (n iterations)

• Case 1: Bomb is Functional

– The probability that the bomb does not explode after n iterations is (cos2(θ/2))n = cos2n(θ/2).
– Total Blast Probability: P (at least 1 blast) = 1− (cos2(θ/2))n.
– Using cos2(θ/2) = 1− sin2(θ/2), we get:

P (blast) = 1− (1− sin2(θ/2))n ≈ 1− (1− n sin2(θ/2)) = n sin2(θ/2)

– If the bomb does not explode, the final measurement in the standard basis will yield 0 with probability 1.

• Case 2: Bomb is Non-functional

– The state simply rotates n times: (R(θ))n |0⟩ = R(nθ) |0⟩.
– We choose n = π/θ so that the total rotation is π/2.
– The final state is R(π) |0⟩ = |1⟩.
– The final measurement in the standard basis will yield 1 with probability 1.

Efficiency and Success

• For n = π/θ, we can distinguish a functional bomb from a non-functional one if the bomb did not explode.

• The blast probability is P (blast) ≈ π
θ · sin2(θ/2) ≤ π

θ · θ2

4 = πθ
4 .

• By decreasing θ (and increasingn), the probability of exploding the bomb during testing can bemade arbitrarily
small.

5 Properties of Unitary Maps
In this section, we explore the fundamental relationship between unitary matrices and orthonormal bases.

Lemma 1. Let U be a linear map onCd. Then U is unitary (U†U = I) iff the columns of U form an orthonormal basis.

Proof. Let the columns of U be denoted by |v1⟩ , |v2⟩ , . . . , |vd⟩. The entry at row i and column j of the product U†U
is given by the inner product of the i-th row of U† (which is the conjugate transpose of the i-th column of U ) and
the j-th column of U . Thus, (U†U)ij = ⟨vi|vj⟩.

• Lemma 1.1 ( =⇒ ): If U is unitary, then U†U = I . This implies (U†U)ij = δij , where δij is the Kronecker
delta. Therefore, ⟨vi|vj⟩ = 1 if i = j and 0 if i ̸= j, meaning the columns are orthonormal. Since there are d
such vectors in Cd, they form an orthonormal basis.

• Lemma 1.2 ( ⇐= ): If the columns form an orthonormal basis, then ⟨vi|vj⟩ = δij . It follows that (U†U)ij =
δij , so U†U = I , making U unitary.

Lemma 2. U is unitary iff it transforms any orthonormal basis of Cd into an orthonormal basis.

Proof. Let {|e1⟩ , . . . , |ed⟩} be an arbitrary orthonormal basis. The transformed basis is {|fi⟩} where |fi⟩ = U |ei⟩.
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• Lemma 2.1 ( =⇒ ): Suppose U is unitary. The inner product of the transformed vectors is:

⟨fi|fj⟩ = (U |ei⟩)†(U |ej⟩) = ⟨ei|U†U |ej⟩

Since U†U = I , this simplifies to ⟨ei|ej⟩ = δij . Thus, the transformed vectors remain orthonormal and form
a basis.

• Lemma 2.2 ( ⇐= ): IfU transforms any orthonormal basis into an orthonormal basis, let it act on the standard
basis {|0⟩ , |1⟩ , . . . , |d− 1⟩}. The columns ofU are exactly the images of the standard basis vectors. Since these
images must be orthonormal by assumption, the columns of U are orthonormal. By Lemma 1.2, U is unitary.

Lemma 3. If U transforms a specific orthonormal basis ofCd into another orthonormal basis, then U transforms each
orthonormal basis of Cd into some orthonormal basis.

Proof. Let B1 = {|v1⟩ , |v2⟩ , . . . , |vd⟩} be a specific orthonormal basis that U transforms into another orthonormal
basis B2 = {|w1⟩ , |w2⟩ , . . . , |wd⟩}. By definition, U |vi⟩ = |wi⟩ for all i.

1. Preservation of Inner Product for Basis Vectors: Since B2 is an orthonormal basis, the inner product of
the transformed vectors satisfies:

⟨Uvi|Uvj⟩ = ⟨wi|wj⟩ = δij

Since B1 is also orthonormal, we have ⟨vi|vj⟩ = δij . Thus, ⟨Uvi|Uvj⟩ = ⟨vi|vj⟩ for all i, j.

2. General Unitarity: Any arbitrary vectors |a⟩ , |b⟩ ∈ Cd can be expanded in the basis B1 as |a⟩ =
∑

i ai |vi⟩
and |b⟩ =

∑
j bj |vj⟩. Due to the linearity of U :

⟨Ua|Ub⟩ =
∑
i,j

a∗i bj ⟨Uvi|Uvj⟩ =
∑
i,j

a∗i bjδij =
∑
i

a∗i bi = ⟨a|b⟩

This identity ⟨a|U†U |b⟩ = ⟨a| I |b⟩ for all |a⟩ , |b⟩ implies U†U = I . Therefore, U is unitary.

3. Transformation of Any Basis: By Lemma 2.1, we have already established that if U is unitary, it transforms
any orthonormal basis into another orthonormal basis. Thus, the property holds universally.

6 ElementaryQuantum Gates

6.1 SingleQubit Gates
• Hadamard (H):

– Matrix: H = 1√
2

(
1 1
1 −1

)
– Action on Computational Basis:

∗ H |0⟩ = |+⟩
∗ H |1⟩ = |−⟩

– Action on Hadamard Basis:
∗ H |+⟩ = |0⟩
∗ H |−⟩ = |1⟩

– Property: H† = H (Self-adjoint).

• Pauli-X (Bit Flip):
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– Matrix: X =

(
0 1
1 0

)
– Action:

∗ X |0⟩ = |1⟩
∗ X |1⟩ = |0⟩

• Pauli-Z (Phase Flip):

– Matrix: Z =

(
1 0
0 −1

)
– Action on Computational Basis:

∗ Z |0⟩ = |0⟩
∗ Z |1⟩ = − |1⟩

– Action on Hadamard Basis: (Acts as bit flip in Hadamard basis)
∗ Z |+⟩ = |−⟩
∗ Z |−⟩ = |+⟩

• Pauli-Y:

– Matrix: Y =

(
0 −i
i 0

)
– Relation: Y = iXZ

– Action:
∗ Y |0⟩ = i |1⟩
∗ Y |1⟩ = −i |0⟩

• Phase Gate (Rφ):

– Matrix: Rφ =

(
1 0
0 eiφ

)
– Action:

∗ Rφ |0⟩ = |0⟩
∗ Rφ |1⟩ = eiφ |1⟩

– Note: The Z gate is a special case where Z = Rπ .

6.2 Multi-Qubit Gates
• CNOT (Controlled-NOT):

– A 2-qubit gate with a control qubit and a target qubit.
– Matrix Representation:

CNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0


– Operational Mapping:

∗ CNOT |0⟩ |b⟩ = |0⟩ |b⟩
∗ CNOT |1⟩ |b⟩ = |1⟩ |1⊕ b⟩

– Qubit Roles:
∗ First qubit→ Control qubit
∗ Second qubit→ Target qubit
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• CCNOT (Toffoli Gate):

– A 3-qubit gate where the third qubit (target) is flipped if and only if the first two qubits (controls) are
both in the |1⟩ state.

– Matrix Representation:

CCNOT =

 I6×6 0

0
0 1
1 0


– Logic:

∗ |x, y, z⟩ → |x, y, z ⊕ (x ∧ y)⟩

7 Exercises
1. Conditional Unitary Construction: Construct a matrix for a 2n qubit state that applies unitary U to the

last n qubits only when the first n qubits are all 1.

2. Universal Logic: Construct classical AND, OR, and NOT gates using only the Toffoli gate.
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